
ON q-DIFFERENCE EQUATIONS AND Zn

DECOMPOSITIONS OF expq FUNCTION

A. K. Kwaśniewski
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Abstract. The q−extended hyperbolic functions of n-th order {hq,s(z)}s∈Zn which
are Zn-components of expq function form the set fundamental solutions of a simple
q−difference equation. Against the background of q−deformed hyperbolic functions
of n-th order other natural extensions and related topics are considered. Apart from
easy general solution of homogeneous ordinary q−difference equations of n-th order
main trigonometric-like identity known for hyperbolic functions of n-th order is given
its q−commutative counterpart. Hint how to arrive at other identities is implicit in
the q−treatment proposed. The paper constitutes an example of the application of the
method of projections presented in Advances in Applied Clifford Algebras publication
[19] ; see also references to Ben Cheikh’s papers.

1. Introduction

Decomposition of functions with respect to the cyclic group of order n has
appeared very fruitful in many aspects (see Ben Cheikh and Duak papers [4-
13] and references therein). The method of Zn decompositions of functions [5]
i.e. the method of introducing Zn grading into the linear spaces of functions or
algebras of endomorphisms dates back at least to works of Srivastava (1979) ,
Ricci (1978) , Osler (1975), Ismail (1986) (see [28] ) and explicitly or implicitly
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was put to good account by others earlier (see for example [23-25]). Nowadays
this approach of Zn decompositions is being explicitly or implicitly applied
advantageously by other authors apart from the already mentioned ones (see
for example [14, 18-20 , 1-3] and references therein).

As a matter of fact the idea of n-cyclicity (Un = I; Uk 6= I for k < n)
hence Zn grading appearance may be traced back [18] perhaps to Weierstrass
[31].

For extensive applications based on Zn cyclic group of order n i.e. applica-
tions of algebra gradings with grading group Γ = Zk

⊗
Zk . . .

⊗
Zk see [21] and

a lot of references therein. In the present article we shall follow Ben Cheikh’s
papers [8], [4] where a methodological attitude to the Zn decomposition was
formulated in the form of the following problem:

“(P) : If special function f satisfies a property P what corresponds to the
property of the corresponding f[n,k]?”

Here ([4-7], [19,1,2]) f[n,k] ≡ fk = Πk f where projection operators {Πk}k∈Zn

are defined according to:

Πk :=
1
n

∑

s∈Zn

ω−ksΩs; (Ωf)(z) := f(ωz). Zn = {0, 1, . . . , n− 1}

denotes cyclic group under the addition i.e. for k, l ∈ Zn : k+̇l means addi-

tion mod n ; k−̇l stays for subtraction mod n and ω = exp
(

i
2π

n

)
; n > 1.

In the sequel we shall use notation {Πk}k∈Zn ≡ {Π[n,k]}k∈Zn ≡ {∆k}k∈Zn in
conformity with the papers [4-7] , [19] mentioned. Of course Zn labeled projec-
tion operators {Πk}k∈Zn do satisfy ΠlΠm = δlmΠl and

∑

k∈Zn

Πk = id. Hence

∑

k∈Zn

fk = f and this very formula shall be called the decomposition of function

f with respect to the cyclic group of order n or in short: Zn decomposition of
f .

As for the examples of the property P declared above these are the fol-
lowing: integral representation existence, type of recurrence equation being
satisfied (in the case of function sequences), generating function description
(in the case of function sequences), hypergeometric representation relations,
orthogonality relations, type of differential equation being satisfied or type of
difference equation being satisfied etc.

The latter means: find differential/difference equation being satisfied by
{fk}k∈Zn components of f ∈ V when the differential/difference equation deter-
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mining f is known. This question was systematically and with full particulars
treated in [8] - see there Theorem 3.1 and applications that follow it.

In this note we are concerned mostly with q−extended hyperbolic functions
of n-th order {hq,s(z)}s∈Zn [20]. Functions {hq,s(z)}s∈Zn are fundamental so-
lutions of q−difference equation

∂n
q hq,k = hq,k(x) ; k ∈ Zn , (1)

resulting from

∂k
q hq,l = hq,l−̇k(x) ; k, l ∈ Zn , (2)

The q−extended hyperbolic functions {hq,s(z)}s∈Zn
of n-th order are Zn-

components of expq function so that

expq(z) =
∑

k∈Zn

hq,k(z) . (3)

The difference operator ∂q called the Jackson’s derivative [16,15] and expq

function are defined below in the preliminaries.
Against a background of q−deformed hyperbolic functions

{hq,s(z)}s∈Zn of n-th order and their natural extensions other related topics are
discussed in this note. Apart from easy general solution of homogeneous ordi-
nary q−difference equations (O ∂qE) of n-th order (with constant coefficients)
main trigonometric-like identity known for hyperbolic functions {hs(z)}s∈Zn

of n-th order [18-20, 23-25] is given its q−noncommutative counterpart. Hint
how to arrive at others is implicit in the q−treatment proposed. The idea of
such treatment goes back at least to Cigler [32] (see formula (7), (11) and
other that follow there - see also Kirchenhofer [32] for further systematic de-
velopment ). As for the matrix form of q−binomiality property (for q =1 see :
Ungar, Mooldon, Kalman [20,23]) - this is only formulated here. More detailed
investigation is postponed to a subsequent article. Before proceeding further
we introduce basic notation in the setting of the above outlined motivation.

2. Preliminaries

The easy eigenvalue and eigenspaces problem for ω-scaling operator Ω : V → V

(Ωf)(z) := f(ωz) (4)
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where V stands for chosen function vector space - leads to natural Zn grading
of this very linear space as well as the algebra End(V) of its endomorphisms:

V =
⊗

k∈Zn

Vk ; (5)

End (V) =
⊗

k∈Zn

[End (V)]k . (6)

Here the vector subspace Vk designates the eigenspace of ω-scaling operator
Ω appointed to its eigenvalue ωk ; k ∈ Zn :

Vk 3 fk ; Ω fk = ωk fk ; k ∈ Zn . (7)

In turn the vector subspace [End(V)]k stands for linear space of homoge-
neous endomorphisms of degree k [4,8]

[End(V)]k 3 Φk iff Φk : Vl → Vl+̇k; l, k ∈ Zn (8)

The subspaces [End(V)]k ; k ∈ Zn are also eigenspaces of a certain operator
and are obtained as a result of projection Pk : End(V) → [End(V)]k. Namely
- it is obvious that similarly to projection operators {Πk}k∈Zn being defined
according to:

Πk :=
1
n

∑

s∈Zn

ω−ksΩs; k ∈ Zn (9)

also Pk; k ∈ Zn (due to βn = id, βr 6= id; r < n)

Pk :=
1
n

∑

s∈Zn

ω−ksβs; k ∈ Zn (9b)

constitute a family of projection operators where

β : End(V) → [End(V)]; End(V) 3 Φ → β(Φ) = Ω◦Φ◦Ω−1 ∈ End(V).(10)

Naturally
∑

k∈Zn

Pk = id and PkPl = Pkδkl ; l, k ∈ Zn - therefore

Pk[End(V)] = [End(V)]k ; k ∈ Zn (11)

and of course (6) holds i.e. End(V) =
⊗

k∈Zn

[End(V)]k.
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Example 1.

Here come few examples [4,8,9] of homogeneous mappings: l, k ∈ Zn,
[End(V)]k 3 Φk Φk : Vl → Vl+̇k · Ω and {Πk}k∈Zn

mappings are of course
homogeneous of degree zero mappings in the terminology of graded vector
spaces or modules while at a point multiplication by fk ; k ∈ Zn is the ex-
ample of k-th degree homogeneous mappings. The so called [4] “n-translation
operator” nτz

(nτz)(α) :=
1
n

∑

k∈Zn

f(α + ωkz) = Π0f(α + z) (12)

(Π0 acts on gα function gα(z) ≡ f(α + z) - is the homogeneous operator of
degree zero.

Finally and for the future use (see α-Example 4): α-projection operators
{Π(α)

l }l∈Zn introduced in [20] are homogeneous of degree zero.

These are defined according to Π(α)
k :=

1
n

α−
k
n

∑

s∈Zn

ω−ksΩsS(n
√

α). Here

n
√

α is an arbitrarily specified n-th root of α and S(λ) denotes scaling operator
(S(λ)f)(z) := f(λz). {Π(α)

l }l∈Zn is an easy generalization of the family of
projection operators used under notation {Π[n,k]}k∈Zn in [ 4,5,6] ; namely
Π(α)

k = α
−k
n S (n

√
α)Πk. Hence we infer that

Π(α)
l Π(α)

m = δlmΠ(α)
l α

−m
n S

(
n
√

α
)

and
∑

k∈Zn

α
k
n Π(α)

k = S
(
n
√

α
)
.

Differentiation D ≡ d

dz
mapping is of degree −̇1 = n−1; [End(V)]n−l 3 D. In-

deed; due to Leibnitz rule and differentiation of superposition rule D[zkf(zn)] =
zk−lg(zn).

∂q - Example 2.

q−Difference ∂q homogeneous mapping is of degree

−̇ = n− 1; [End(V)]n−l 3 ∂q.

Indeed; to see that let us at first define (see [20,21,15,16] and references therein)
what is known since a long time; see [16] from 1910 year and [15] for Heine and
Gauss contribution and also [17] for may be application to quantum processes
description and overall theory of the so called non-commutative geometry.
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We perform after Heine and Gauss [15] a replacement x 7→ xq thus arriving
at the standard by now q−extension of the variable x ∈ C according to the
prescription:

x 7→ xq ≡ 1− qx

1− q
−→
q→1 x.

Then consequently we have for nq and q−factorial

n 7→ nq ≡ 1− qn

1− q
= 1 + q + . . . + qn−1 −→

q→1 n

nq! = nq(n− 1)q!; 1q! = 0q! = 1; nq! −→q→1 n!

Also integration and derivation [15,16] might be q−extended. Here we intro-
duce only - what is called - Jackson’s derivative ∂q -a kind of difference operator.
It is defined as follows :

(∂qϕ) (x) =
ϕ(x)− ϕ(qx)

(1− q)x
. (13)

Exercise 1. Show that ∂qx
n = nqx

n−1

Exercise 2. Prove that the famous [15-17] q−exp function expq[z] :=
∞∑

k=0

zk

kq!
satisfies:

∂q expq = expq; expq[z]z=0 = 1.

Note: expq[z] :=
∞∑

k=0

zk

kq!
is well defined only for q; qn 6= 1, n ∈ N

Naturally ∂q −→q→1

d

dx
and it is a mere of exercise to prove that Q-Leibnitz rule

holds:

∂q(f · g) = (∂qf) · g + (Qf) · (∂qg) where (Qϕ)(z) := ϕ(qz). (14)

The “difference-ization” of superposition rule is quite more complicated and it
reads (f ′ ≡ ∂qf)

∂qf(g(z)) =
g(z)(1− q)f ′(g)g=g(z) + f(qg(z))− f(g(qz))

g(z)− g(qz)
∂qg(z). (15)
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And so “difference-ization” ∂q endomorphism is of degree −̇1 = n − 1;
[End(V)]n−l 3 ∂q due to the Ω - Leibnitz rule (14) and “difference-ization”
of superposition rule (15).
Indeed: ∂q[zkf(zn)] = zk−̇1h(zn). One may now conclude that ∂n

q is homoge-
neous of order zero endomorphism as ∂k

q ; k ∈ Zn are homogeneous of order
−̇k = n−̇k mappings.
Also ẑD and ẑ∂q are of zero order endomorphisms (concatenation of opera-
tor symbols designates their superposition i.e. successive application) where
(ẑf)(z) = zf(z).

Remark 1. (Theorem II-1 in [4]) It is to be noted and then used - that ;
[End(V)]k 3 Φ iff [Πk,Φ] ≡ Πk ◦ Φ− Φ ◦Πk = 0.

Remark 2. Iteration of ∂q expq = expq i.e. iteration of the resulting q−difference

recurrence expq(x) =
expq(x)− expq(qx)

(1− q)x
leads to another equivalent expres-

sion for the expq function

expq(z) =
∞∏

n=0

1
1− (1− q)qnz

. (16)

Applying now projection operators {Πl}l∈Zn to expq function we get the
family {hq,s(z)}s∈Zn of q−extended hyperbolic functions of order n where
hq,s ≡ Πs expq; s ∈ Zn and

hq,s = Πs expq; s ∈ Zn;hq,s −→q→1 hs; s ∈ Zn.

Apparently hq,s(z) =
∑

k≥0

znk+s

(nk + s)q!
named q − l − expq series [19, 20] are

eigenfunctions of Ω : Ωhq,s = ωshq,s; s ∈ Zn and

hq,s(z) =
1
n

∑

k∈Zn

ω−ks expq(ω
kz); s ∈ Zn. (17)

Note also that

expq(ω
lz) =

1
n

∑

k∈Zn

ωklhq,k(z); l ∈ Zn. (18)
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At the end let us state the link in-between the most powerful and simple series
via expq . Namely due to (also see (16) and note that 00 = 1):

expo(z)− 1
z

= expo(z) ⇒ expo(z) =
1

1− z
=

∞∑

k=0

zk; |z| < 1,

we ascertain: expo(z) =
1

1− z
and exp(z) are mutual limit deformations for

|z| < 1:

∑

k≥0

zk

k!
= exp(z) ←−1←q

expq(z) =
∞∑

n=0

zn

nq!
−→
q→0 expq=0[z] =

1
1− z

=
∑

k≥0

zk; |z| < 1

and h0,s(z) =
∑

k≥0

znk+s s ∈ Zn. Therefore identities for {hq,s(z)}s∈Zn includ-

ing those which mimic hyperbolic-trigonometric ones - comprise also 0−l-series
h0,s(z) =

∑

k≥0

znk+s.

Remark 3. The q−difference ∂q operator called the Jackson’s ∂q-derivative
may be represented as a superposition of a differential operator of infinite
order and Q scaling operator (recall : (Qϕ)(z) := ϕ(qz) where ϕ a polynomials
or formal power series).
Namely the Jackson’s ∂q-derivative is given by [21]

(∂qϕ)(x) =
1− qQ
(1− q)

∂oϕ(x).

where ∂o = ∂q=0 is the differential operator of infinite order

∂o =
∞∑

n=1

(−1)n+1 zn−1

n!
dn

dzn
.

3. Linear Homogeneous Constant Coefficient Ordinary q−Difference
Equations and q−hyperbolic Functions of the n-th Order

(The classical references on q−difference equations are: Adams [16] and
Trjitzinsky [16]).

Linear homogeneous constant coefficient ordinary q−difference equations
of n-th order (O∂qE) or equivalently system of n linear homogeneous con-
stant coefficient ordinary q− difference equations of the first order - may be
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treated in complete analogy with their differential correspondents and even
more (O∂qE) −→q→1 (ODE): i.e. ordinary differential equations may be treated
as the −→

q→1 limit of q−difference equations.
Let then Wn[z]; degWn[z] = n be a polynomial. Linear homogeneous con-

stant coefficient ordinary q−difference equation in the vector space V is then
defined to be :

Wn[∂q]f = 0; f ∈ V (19)

When V is the vector space of entire functions the solution of (17) is easy to ob-
tain after substitution f(z) = expq[λz] is made as then we get the characteristic
equation Wn[λ] = 0. There are now two cases to be considered. 1) Polynomial

Wn[λ] has n different from each other roots: Wn[λ] =
n∏

k=1

(λ− λk); λk 6= λl for

k 6= l; 2) otherwise. In the first case the general solution of (17) has the familiar
form :

f(z) =
n∑

k=1

Ak expp{λkz}. (20)

In the second case let λ be the root of Wn[λ] with multiplicity k. Then
Wn[∂q] = Wn−k[∂q](∂q − λ)k and the λ root with multiplicity k contributes to
the overall general solution sum via following function of again familiar form:

rλ(z) = expp(λz)
k−1∑
s=0

Asz
s (21)

so that f(z) =
∑

λ∈Λ

rλ(z) where Λ = set of different from each other roots of

polynomial Wn[λ]
For that to see it is enough to prove that

∀s ∈ N ;
(
∂q − λ

)s[
zs−1 expq{λz}] = 0; (22)

(use the induction and the property (see: (14)) of ∂q difference operator :
∂q expq(λz) = λ expq(λz) and also ∂qx

n = nqx
n−1 - of course).
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Example 3.

Consider Wn[λ] = λn − 1. If in addition to (19) where V is the vector space
of entire functions one adds various initial conditions requirements then the
solutions are unique.

For example: f
(l)
k (0) = ωkl ; k, l ∈ Zn imply fk(z) = expq[ωkz] ; k ∈ Zn .

For example: f
(l)
k (0) = δ0,k−̇l ; k, l ∈ Zn imply fk(z) = hq,k(z) ; k ∈ Zn.

Of course both sets of solutions are linear combinations: one of each other and
with the above choice - these are (17) and (18) formulas. In the sequel of the
Example 3 we shall be concerned with the family {hq,s(z)}s∈Zn of q−extended
hyperbolic functions of order n which are Zn -components of expq. While n

is fixed we shall abbreviate: {h[n]
q,s(z)}s∈Zn

≡ {hq,s(z)}s∈Zn
. These are - as we

have seen - the fundamental solutions of q−difference equation

∂n
q hq,k = hq,k(x) ; k ∈ Zn, (23)

resulting from

∂k
q hq,l = hq,l−̇k(x) ; k, l ∈ Zn, (24)

for q−extended hyperbolic functions {hq,s(z)}s∈Zn ≡ {h[n]
q,s(z)}s∈Zn of n-th

order.
As in (24) also some trigonometric-like identities satisfied by hyperbolic func-
tions of n-th order {hs(z)}s∈Zn ([20], [18], [23-25]) q−extend almost automati-
cally from the q = 1 case after one crucial “revolutionary” observation is made
and the way out in new circumstances is accepted. For that to do consider
([19], see also [18, 20]) the convolution identity

∑

k∈Zn

hk(α)hi−k(β) ≡ hi(α + β); i ∈ Zn. (25)

From (25) we see that
∑

k∈Zn

hk(α)h−̇k(z) ≡ h0(α + z) and via

Π0

∑

k∈Z3

hk(α)h−̇k(z) = Π0h0(α + z)
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one arrives at the very founding identity for the special analytical functions of
Tchebysheff type [19], [2,3, 22] ( from (4.2) in Ricci [25]- to (26) below - one
step was missing) i.e.

h0(α)h0(z) =
1
n

∑

k∈Zn

h0(α + ωkz). (26)

(Note: Π0 was acting up there on gα function of z; gα(z) ≡ f(α + z); here
f = h−̇k ; k ∈ Zn - compare with (12)).

The convolution property is easily derived from de Moivre formulas in
their matrix form [20, 18] due to the fact that {H(z) = exp{γz}}z∈C forms
what we call de Moivre group because of H(z)H(w) = H(z + w) where
γ = (δi,k−̇1); k, i ∈ Zn and det H(z) = 1 ( note γn = (δi,k−̇1)

n = I and
Trγ = Tr(δi,k−̇1) = 0). As for the property H(z)H(w) = H(z + w) this is no
more the case when one replaces exp in H(z) = exp{γz} by expq (with q 6= 1)
because

expq[z] expq[w] 6= expq[z + w] for q 6= 1. (27)

In order to find a way out and to proceed with maximum analogy to the
familiar hyperbolic or α-hyperbolic case [20,18,29] we propose the following. (
Put α = 1 = q and you are in with the most familiar hyperbolic case [25, 18]).
In full analogy with [20] let us introduce the q − α−de Moivre one parameter
family of matrices {Hα

q (z) = expq{γ(α)z}}z∈C where γ(α) = (δi,k−̇l + (α −
1)δn−1,0); k, i ∈ Zn i.e.

Hα
q (z) =




expα
q,0(z) expα

q,1(z) . . . expα
q,n−1(z)

α expα
q,n−1(z) expα

q,0(z) . . . expα
q,n−2(z)

. . . . . . . . . . . .

α expα
q,1(z) α expα

q,2(z) . . . expα
q,0(z)




.

It is obvious that: γ(α)n = αI, Tr γ = 0. However (put L = expq in (α−23)

from [20]) det Hα
q (z) = det expq{γ(α)z} =

∏

l∈Zn

expq(ω
l n
√

αz) 6= 1 for q 6=

1 and because of (27) neither the q − α−de Moivre one parameter family
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{Hα
q (z) = expq{γ(α)z}}z∈C forms the group for q 6= 1.

The identity det expq{γ(α)ϕ} =
∏

l∈Zn

expq(ω
l n
√

αϕ) for n = 2 α = 1 and

q = 1 becomes [cos hϕ]2 − [sin hϕ]2 = 1 while for n = 2 α = −1 and q = 1 we
get [cos ϕ]2 + [sin ϕ]2 = 1.
Nevertheless the identity det expq{γ(α)ϕ} =

∏

l∈Zn

expq(ω
l n
√

αϕ) could hardly

be considered hyperbolic-trigonometrical - because no reasonable extension of
(25) exists. As for the identity (26) - this may be seen to be the q = 1 case of
the following quite involved identity (Consult [4] and/or formula (12) in this
note for “n-translation operator” nτz)

1
n

∑

k∈Zn

h0

(
x +q ωkz

)
= (

∑

k∈Z

nτq,ωkz) expq[x] (q − 26)

where

(nτq,zf)(α) :=
1
n

∑

k∈Zn

f(α +q ωkz) = Π0f(α +q z) (q − 12)

and where

f(z +q w) ≡ Ew(∂q)f(z). (28)

Here

Ew(∂q) ≡ expq{w∂q} =
∞∑

k=0

wk∂k
q

kq!
(29)

plays the role of a generalized translation operator - the most important oper-
ator of extended finite operator calculus of Rota [21] (compare with expq(x) =
∞∑

k−0

xk

kq!
). On that occasion recall: the textbook translation operator is this

one: exp{a d

dx
} =

∞∑

k=0

ak

k!
dk

dxk
and

∞∑

k=0

ak

k!
dk

dxk
f(x) = exp{a d

dx
}f(x) = f(x + a)

is just Taylor’s expansion formula.
And again the identity (q − 26) could hardly be considered hyperbolic-trigo-
nometrical - because - as already stated no reasonable extension of (25) exists.
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However.... However there exists an extension of magic intrinsic and intriguing
beauty.

Exercise 3 prove the identity (A + B)n ≡
∑

k≥0

(
n
k

)

q

AkBn−k where [B, A]q ≡

BA− qAB = 0.
Observe now [21] that

expq[ẑ] expq[ŵ] = expq[ẑ + ŵ] (30)

where [ŵ, ẑ]q ≡ ŵẑ − qŵẑ = 0 - see Proposition 4.2.4 in [17].
The idea to use “q−commuting variables” goes back at least to Cigler [32] (see
there formula (7), (11) and other that follow - see also Kirchenhofer [32] for
further systematic development). We call such variables q− commuting (see
[17] Chapter 4 on “quantum planes”). Realization of such pairs (see: Cigler,
Kirchenhofer [32] and [21] ) may be for our purpose here adopted as follows.

Put ẑ = x̂ and ŵ(y) = ŵ = yQ̂ where: x, y ∈ C ; Q̂ϕ(x) = ϕ(qx); x̂ϕ(x) =
xϕ(x). The matrix entries and variables are now operators alike ẑ and ŵ . This
taken for granted due to (30) we recover (compare with Proposition 4.2.4 in
[17]) the extended de Moivre property

expq{γ(α)ẑ} expq{γ(α)ŵ} = expq{γ(α)(ẑ + ŵ)} (31)

for the extended de Moivre family {Hα
q (û) = expq{γ(α)û}}û∈Ĉ , û = aẑ +

bŵ, a, b ∈ C i.e. û ∈ Ĉ where Ĉ designates quantum plane [17]. We also recover
the form of intrinsically hyperbolic-trigonometric, distinctive identity (25) -
now in q−commuting variables (α = 1 for simplicity of expression)

∑

k∈Zn

hq,k(ẑ)hq,i−k(ŵ) ≡ hq,i(ẑ + ŵ) i ∈ Zn. (32)

Let us apply now an igneous invention of Cigler [32]

(x̂ + yQ̂)n1 ≡
∑

k≥0

(
n
k

)

q

xkyn−k (33)

used as in [21] (see Kirchenhofer [32]) for definition of q−binomial sequences
{pk}k≥0

Ey(∂q)pn(x)≡pn(x +q y)≡
∑

k≥0

(
n
k

)

q

pk(x)pn−k(y) = pn(x̂ + yQ̂)1 ≡
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pn(ẑ + ŵ)1 (34)

hence in particular for {pk}k≥0 = {xk}k≥0

(ẑ + ŵ)n1 ≡ (x̂ + yQ̂)n1 ≡
∑

k≥0

(
n
k

)

q

xkyn−k = 1 ≡ (x +q y)n

As one can see - due to (32) with (34) being taken into account - the family
of q−hyperbolic mappings {h[n+1]

q,n−1(ẑ)}n≥0 constitutes the nontrivial example
of the q−binomial sequence of functions mapping groupoids into rings - which
are not polynomials - see Remark 4 - below.
From (31) and (33) we infer then that

[expq{γ(α)ẑ} expq{γ(α)ŵ}]1 = expq{γ(α)(ẑ + ŵ)}1 = expq{γ(α)(x + y)}. (35)

From (32) alike in (35) (see (34) and consult eventually [21] and [32] ) we arrive
at

[ ∑

k∈Zn

hq,k(ẑ)hq,i−k(ŵ)

]
1 ≡ hq,i(ẑ + ŵ)1 i ∈ Zn

from which we have

Ey(∂q)hq,i(x) ≡ hq,i(ẑ + ŵ)1 =
∑

k∈Zn

hq,k(x)hq,i−k(y) , i ∈ Zn. (36)

The equation (36) may be considered as the characterization of the extended de
Moivre family {Hα

q (û) = expq{γ(α)û}}û∈Ĉ and it is pertinent generalization
of q = 1 de Moivre group characterization via convolution identity (32) with
specification : ẑ = x and ŵ = y. Note [ẑ, ẑ]q 6= 0 therefore

∑

k∈Zn

hk(ẑ)hi−k(ẑ) 6=

hi(2ẑ) i ∈ Zn although there is a reason for complacency - namely:

det expq{γ(α)ẑ} = I ⇔ det Hα
q (ẑ)1 = 1. (37)

Indeed: det Hα
q (ẑ) = det expq{γ(α)ẑ} =

∏

k∈Zn

expq(ω
k n
√

αẑ) = expq

{
ẑ n
√

α
∑

k∈Zn

ωk

}
= I, where we define associative ring valued det mapping
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for commuting entries aij of matrix A = (aij) formally as in a standard case
of the field entries:

det A =
∑

σ∈Sn

sign σ aσ(1)1aσ(2)2aσ(3)3 . . . aσ(n)n.

On this occasion note that one may keep (37) etc. survive while remedy the
[ẑ, ẑ]q 6= 0 and

∑

k∈Zn

hk(ẑ)hi−k(ẑ) 6= hi(2ẑ) so as to get equalities instead in-

equalities. For that to arrive chose Grassmann-like representation: ẑ = θx̂
and ŵ = yθQ̂ where θ2 = 0. The price to pay for it is kind of triviality
as then expq{γ(α)ẑ} = 1 + γ(α)ẑ, [expq{γ(α)ẑ}]n = 1 + nγ(α)ẑ as well as
[1 + ŵ]n = 1 + nŵ.
To this end let us note that among others the q−extension of considerations
of Ungar ( (1983), [29]) and Kalman and Ungar [29] seams to be at hand.

− Do we then have now the permit of driving license to keep straight to the
roots of “q−commutative hyperbolic-trigonometric routs” ?

For any case and to this end let us return to the related examples of q−difference
equations.

α− Example 4.

Consult [20], Example 1 and compare with A. A. Ungar in [29]. Consider now
Wn[λ] = λn − α. If in addition to (19) where V is the vector space of entire
functions one adds various initial conditions requirements then the solutions
are unique.

For example: f
(l)
k (0) = α

l
n ωkl ; k, l ∈ Zn imply fk(z) = expq[n

√
αωkz] ;

k ∈ Zn .

For example: f
(l)
k (0) = (1+(α−1)δk,l) ; k, l ∈ Zn imply fk(z) = hα

q,k(z) ;
k ∈ Zn.

Indeed: ∂qh
α
q,s(z) = (1 + (α− 1)δ0,s) hα

q,s−̇1
(z) ; s ∈ Zn from which [20]

∂k
q hα

k,l =
k−̇1∏
s=0

(1 + (α− 1)δ0,l−̇s)h
α
q,l−̇k

; k, l ∈ Zn, (39)
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follows where (see [20])

hα
q,s(z) =

1
n

α
−s
n

∑

k∈Zn

ω−ks expq(ω
k n
√

αz); s ∈ Zn (40)

and naturally

∂n
q hα

q,l = αhα
q,l; l ∈ Zn (41)

Using (α - 19) from [20] with L = expq and recalling [20] that hα
q,s = Πα

s expq

where
Π(α)

k :=
1
n

α−
k
n

∑

s∈Zn

ω−ksΩsS(n
√

α) ; (S(λ)f)(z) := f(λz) one derives

expq(ω
l n
√

αz) =
∑

k∈Zn

α
k
n ωklhα

q,k(x) (42)

Of course both sets of solutions are linear combinations one of each other and
with the above choice - these are (40) and (42) formulas. Because of the familiar
form of hα

q,s, s ∈ Zn (compare with [29]) the considered hα
q,s entire functions

hα
q,s(z) =

∑

k≥0

αkznk+s

(nk + s)q!
(43)

shall be called: the s− α− q−hyperbolic series.
It is standard obvious that Hα(z) = exp{γ(α)z}, γ(α) = (δi,k−̇1 + (α −
1)δn−1,0); k, i ∈ Zn is the unique solution of the equation

∂qH
α
q (z) = γ(α)Hα

q (z) wiht Hα
q (0) = I. (44)

Naturally from the above we conclude (compare with Muldoon, Ungar [29])
that

∂n
q Hα

q (z) = αHα
q (z) (45)

hence

∂n
q hα

q,l = αhα
q,l ; l ∈ Zn
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these follow also by noticing that ∂q hα
q,s(z) = (1 + (α− 1)δ0,s) hα

q,s−̇l
(z) ; s ∈

Zn.
Similarly: introducing Hα(ẑ) = exp{γ(α)ẑ} understood - if you like - formally
- and after defining on such vector space of series the following derivation ∂̂q: .

(
∂̂qϕ

)
(ẑ) =

ϕ(ẑ)− ϕ(qẑ)
(1− q)ẑ

. (∂̂q − 13)

we arrive at ∂̂q-version of (39) and (40): ∂̂qH
α
q (ẑ) = γ(α)Hα

q (ẑ) with Hα
q (0̂) = I

and ∂̂n
q Hα

q (ẑ) = αHα
q (ẑ).

On q− binomiality - remark 4

Due to (32) with (34) being taken into account - the family of q−hyperbolic
mappings

{
h

[n+1]
q,n−1(ẑ)

}
n≥0

constitutes the nontrivial example of the q−binomial

sequence of functions mapping groupoids into rings - which are not polynomi-
als - compare with Ungar (1983) [29] (for sequences of functions of binomial
type: see Aczel, Brown [32])

The property called by Kalman and Ungar [29] (see (3) and (5) there) “Ma-
trix Binomial Theorem” in the case of Hα

q (x) matrices has also its q−counterpart
- equivalent to (36):

Hα
q (ẑ +q ŵ)1 = Hα

q (x)Hα
q (y). (46)

Using as in [21] generalized shift operator Ey(∂q) we observe that under natural
action

Hα
q (ẑ +q ŵ)1 = Ey(∂q)Hα

q (x). (47)

Considerations of Sec. 2 in Kalman and Ungar [29] q−extend correspondingly.
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Namely: Let

K =




0 0 0 0 0 . . . 0 0

1q 0 0 0 0 . . . 0 0

0 2q 0 0 0 . . . 0 0

0 0 3q 0 0 . . . 0 0

· · · · · · ·

· · · · · · · ·

· · · · · · · · ·

0 0 0 0 0 (n− 1)q 0




. (48)

Naturally Kn = 0 ; Kk 6= 0 for 0 ≤ k < n. Then for B ≡ expq[x̂ K] =
n−1∑

k=0

x̂kKk

kq!
we get matrix which for editorial reasons we show up for n = 3:

M3(x̂) =




1 0 0 0

x̂ 1 0 0

x̂2 2qx 1 0

x̂3 3qx̂
2 3qx 1




.
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Next let

N =




0 0 0 0 0 . . . 0 0

1 0 0 0 0 . . . 0 0

0 1 0 0 0 . . . 0 0

0 0 1 0 0 . . . 0 0

· · · · · · · ·

· · · · · · · ·

· · · · · · · · · ·

0 0 0 0 0 · 1 0




. (49)

Naturally Nn = 0 ; Nk 6= 0 for 0 ≤ k < n. Then for Mn(x̂) ≡ expq[x̂N ] =
∑

k∈Zn

x̂kNk

kq!
we get Mn(x̂) matrix which - again for editorial reasons write for

n = 3

M3(x̂) =




1 0 0 0

x̂ 1 0 0

x̂2/2q! x̂ 1 0

x̂3/3q! x̂2/2q! x̂ 1




.

As in Hα
q (ẑ) matrix case - compare with (46) and (36) - the following

holds: Mn(ẑ + ŵ) = Mn(ẑ)Mn(ŵ) i.e. Mn(x̂ + y Q̂) = Mn(x̂)Mn(y Q̂) and
the relevantly pertinent generalizations read: for Mn(ẑ) matrix: Mn(ẑ + ŵ)1 ≡
Mn(x +q y) = Mn(x)Mn(y) as well as for Bn(x̂) for which we have: Bn(ẑ +
ŵ)1 ≡ Bn(x +q y) = Bn(x)Bn(y).
In general a characterization of q−binomiality of a sequence may be provided
in the matrix form. This is again an example of what is called by Kalman
and Ungar [29] (see (3) and (5) there) for q = 1 “Matrix Binomial Theorem”.
For that to see observe that Mn(x) ; n = 0, 1, 2, ... matrices serve to copy
the binomiality of the particular binomial sequence

{
xh

}
k≥0

. Similarly the
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property Fn(ẑ + ŵ) = Fn(ẑ)Fn(ŵ) of lower triangular matrices n = 0, 1, 2, ...:
Fn(ẑ) = (fij)

n
i,j=0 ; fi,j =

pi−j

(i− j)q
for i ≥ j and zero otherwise - is equivalent

to the q-binomiality of a {pk(x)}k≥0 polynomial sequence as defined by (34)
i.e.

Ey(∂q)pn(x) ≡ pn(x +q y) ≡
∑

k≥0

(
n
k

)

q

pk(x)pn−k(y).

Using B-matrix form of lower triangular matrices: Gn(ẑ) = (gij)
n
i,j=0 ; gi,j =

pi−j for i ≥ j and zero otherwise - we arrive at equivalent characterization of
polynomial sequences of convolution type ( called also - divided sequences).

∂ψ - Example 6 (ψ-difference equations).

Consult [20,32,21] (see also [26] Chapter 6) and compare with A. A. Ungar in
[29]. Similarly as q−Difference ∂q homogeneous mapping from ∂q - Example
2 the ψ-difference ∂ψ mapping ∂ψ ∈ End(V) may be defined [32, 26,20] as
follows. Consider the generalized factorial nψ! ≡ nψ(n − 1)ψ (n − 2)ψ (n −
3)ψ . . . 2ψ 1ψ; 0ψ! = 1 for an arbitrary sequence Ψ = {ψn}n≥1 with the condi-
tion ψn 6= 0, n ∈ N . Here nψ denotes the ψ-deformed number where in con-
formity with Viskov [32] notation nψ ≡ ψn−1(q)ψ−1

n (q) or equivalently nψ! ≡
ψ−1

n (q). One may now define [21] a difference operator ∂ψ called ψ-derivative on
the entire functions space according to: ∂ψxn = nψxn−1 ; n > 0, ∂ψconst = 0.

Then the ψ− exp function expψ[z] :=
∞∑

k=0

zn

nψ!
enters the game so that most of

all other constructions and statements of this note “Ψ-extend” automatically.
Of course Ωhα

ψ,s = ωshα
ψ,s; s ∈ Zn where hα

ψ,s = Πα
s expψ. All this in mind

consider now Wn[λ] = λn − α. If in addition to (19) where V is the vector
space of entire functions one adds various initial conditions requirements then
the solutions are unique.

For example: f
(l)
k (0) = α

l
n ωkl ; k, l ∈ Zn imply fk(z) = expψ[n

√
α ωkz] ;

k ∈ Zn

For example: = f
(l)
k (0) = (1+(α−1)δk,l); k, l ∈ Zn imply fk(z) = hα

ψ,k(z) ;
k ∈ Zn where (see [20] and α - Example 5 )

hα
ψ,s(z) =

1
n

α
−s
n

∑

k∈Zn

ω−ks expψ

(
ωk n

√
α z

)
; s ∈ Zn ((41), 50)

and
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expψ

(
ωl n

√
α z

)
=

∑

k∈Zn

α
k
n ωkl hα

ψ,k(x) ((42), 51)

so that both sets of solutions are linear combinations: one of each other and
with the above choice these are the formulas (41) and (42).

Naturally

∂n
ψhα

ψ,l = αhα
ψ,l ; l ∈ Zn. ((43), 52)

Remark 5. Consult the Remark 3 and for further details - see [21].

Define the operator ∂R : P → P as follows:

∂R ≡ R(qQ)∂o

where R is an analytic function on complex plane C or a formal Laurent series.
It is not difficult to see that the R-Leibnitz rule has the form

∂R(f • g)(z) = R(qQ){∂o(f • g)}(z) = R(qQ){(∂of)(z) • g(z) + f(0)(∂og)(z)}.

Then note: for ψn(q) =
1

R(qn)!
we have ∂ψ = ∂R and for R(x) =

1− x

1− q
we get

∂R = ∂q.

Hystorical ψ-remark:

We quote here Steven Roman (Chapter 6 p.162 in [26]) - with notation and
reference changed into the one used in this note. “Let nψ! ≡ cn be a sequence
of nonzero constants. If n! is replaced by cn throughout the preceding theory,
then virtually all of the results remain true, mutatis mutandis. In this way each
sequence cn gives rise to a distinct umbral calculus. Actually, Ward [30] seems
to have been the first to suggest such a generalization (of the calculus of finite
differences) in 1936, but the idea remained relatively undeveloped until quite
recently, perhaps due to a feeling that it was mainly generalization for its own
sake. Our purpose here is to indicate that this is not the case.”

Final remark:

Difference equations and functions that were considered here are quite ele-
mentary though seemingly new ones. Note that the likeness, resemblance-the
similarity of D = d

dz and ∂q endomorphisms allows the powerful heuristics of
ordinary differentiation to be brought into play. We hope that this note has
given an idea of the scope of the possible investigation ahead.
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UwB/Preprint#14/July/2000.
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